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Abstract 

If the unit-cell distribution of atomic mean-square 
displacement parameters B =  8rr2(u 2) is assumed to 
be normal, with mean # = (B) and variance 
o '2= ( (B- (B) )2} ,  the statistical expectation value 
of the Debye-Waller factor W 2 = exp(-2Bs2), 
where s = (sin 0)/2, is (W 2) = exp[ -2(#  - o'2s2)s21. 
This result has been incorporated into procedures 
for scaling and normalizing measured Bragg 
intensities to their Wilson expectation values. The 
procedures can determine both isotropic #(B) and 
o'(B) and anisotropic /z(U ij) and o'(UiO distribution 
parameters. Tests with experimental data and refined 
structural models for several protein crystals show 
that the procedures yield reliable normalized 
structure-factor amplitudes for direct-methods appli- 
cations, with values of R = E h  IIEol- IEcll/Eh IEol 
averaging "~5%. 

1. Introduction 

In general, the different atoms of a crystal structure have 
different values for their mean-square displacement 
parameters, 

B = S ~ 2 ( u 2 ) .  (1) 

For example, B values due to thermal vibration are 
usually larger for atoms at the periphery of a 
molecule than for atoms near the molecular center 
of mass, or larger for side-chain atoms than for 
main-chain atoms. We have found that, at room 
temperature, root-mean-square deviations from mean 
B values are typically about 25% in organic 
molecular crystals and 50% or more in crystals of 
biological macromolecules. Atomic B values tend to 
be larger and more broadly distributed in biomole- 
cular crystals because, in general, the crystals are 
highly hydrated, the molecules are loosely packed, 
and atomic displacements due to disorder are 
commonly as large as or larger than the displace- 
ments due to thermal vibration. 

© 1996 International Union of Crystallography 
Printed in Great Britain- all rights reserved 

2. Expectation value for the function 
W 2 = exp[--2B(sinO)2/2 2] 

We assume that the distribution of atomic B values over 
the crystal chemical unit can be fairly approximated by a 
normal distribution, 

p(B) = [1/o.(2zr)l/2]exp--[(B - /1)2/(2o.2)] ,  (2) 

with mean, 

and variance, 

u = <B), (3) 

o.2 = ((B - (B))2} .  (4) 

Then, the statistical expectation value for the Debye- 
Waller factor, 

W 2 = exp(-2Bs2), (5) 

where s = (sin 0)/2, can be obtained according to, 

( f(x))  = f p(x) f (x)  dx, 
- -  0 0  

+ O C  

(exp(-2Bs2)) = 1/[o.(2zr) I/2] f exp- [ (B- /2 )2 / (202) ]  
--OG 

x exp(-2Bs 2) dB. (6) 

As shown in Appendix A, completing the square in the 
integrand simplifies (6) to, 

(exp(-2Bs2)) = exp[ -2 (#  - o . 2 s 2 ) $ 2 ] .  (7) 

Thus, due to the spread of the distribution of atomic B 
values, the expectation value for the Debye-Waller factor 
corresponds to an effective overall B value, 

Borf = <B> - ((B -<B>)2)s 2, (8) 

that is smaller than the mean B, and that decreases with 
increasing (sin 0)/2. 
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3. Application to Wilson scaling 

Wilson (1949) showed that for structures of N atoms per 
unit cell unifo_rmly and randomly distributed in space 
group P1 or P1 the squared structure-factor amplitudes 
have statistical expectation values, 

N 

(IF(h)l 2) -- ~ [fa(S) Wa(s)] 2, (9) 
a = l  

where Ihl = 2s, with expected variances, 

(IFI 2) in P1, or 
((IFI2 - (IF12))2) = 2(Ifl 2) in e i .  (10) 

In higher symmetry space groups the expectation 
values become, 

(IF(h)[ 2) = 6(h) ~ [ f~(s) Wa(s)] 2, (11) 
a 

where 6(h) > 1 is the degeneracy of the reciprocal lattice 
point h. The degeneracy factors are given by, 

e(h) = m/6'(h), (12) 

where m L is the lattice multiplicity and e' is a point-group 
dependent projection symmetry multiplier. The factor 
m L --- 1, 2, 4, or 3 allows for the systematic extinction of 
a fraction (m L - 1)/m L of the reflections due to lattice 
centering so that the total scattering is concentrated in the 
allowed fraction 1/m L of the reflections; the factor 
e ' =  1, 2, 4, 8, 3, 6, or 12 allows for the multiple 
enhancement of the average intensities for certain classes 
of zonal or axial reflections due to superposition of 
symmetrically equivalent atoms in projection onto mirror 
planes or rotation axes (Rogers, 1965, 1980; Iwasaki & 
Ito, 1977). 

When the Wilson expectation values of IFI 2 are used 
to estimate a measurement scaling factor 
k = IF[(absolute)/[Fl(relative), it is usually assumed 
that a single isotropic (B) value, the same for all atoms, 
is an adequate approximation. Then (11) gives, 

IF(h)12meas/[6(h)~f~(s)] ~_k-2exp(-2(B)s2). (13) 

The statistical expectation value (exp(-2Bs2)) given by 
(7) should, however, be a better approximation. It gives, 

]F(h)12meas/[6(h)~f~(s)] "~k-2exp[-2(#-a2s2)s2], 

(14) 

and k,/z, and a can be estimated from a logarithmically 
linearized least-squares fit, 

analogous to the commonly used Wilson plot (Wilson, 
1942). Equation (15) is quadratic in s 2 and, since 
necessarily cr > 0, the curvature must be concave. Thus 
(15) will give a smaller k and larger /z than would a 
conventional Wilson plot which, since it tacitly assumes 
a - 0, is linear in s 2. 

In practice, we initially assume a = 0 and roughly 
approximate k and # using (15). Then, by non-linear 
least-squares iterations based on (14), we first refine k 
and # with a = 0, and then fit k,/z, and cr > 0. In order 
to escape the o = 0 least-squares minimum, the iterations 
to fit a > 0 are started from # = 2#' and a = # ' /2 ,  
where the primed value o f /z  is that fitted with a = 0. 
After fitting for isotropic B values, we fit for overall 
anisotropic b ij values by iterations based on, 

IF(h)12eas/[6(h)~-~a f2(s) ] 

_~ k-2 exp{-2[hruh - (hrah)2]}, 
(16) 

where/ l  and tr are symmetric matrices which must be 
positive definite. The starting values for the anisotropic 
tensor parameters #ij and o "ij ( i _ < j =  1,2,3)  are 
obtained by expansions of the isotropic scalar parameters 
# and cr analogous to the expansion (Johnson & Levy, 
1974) of Bis o to  b ij values, 

___ "" = 1 n*i~*j ~*ij b ij 2zr2a*ia*JU 'j ~_ ~ cos Bis o. (17) 

Details of the least-squares fitting based on (14) 
through (17) are given in Appendix B. We have found 
that even with a -- 0 the iterative least-squares procedure 
is better than the widely used Wilson-plot (Wilson, 1942) 
or K-curve (Karle & Hauptman, 1953) procedures or 
methods based on analysis of the Patterson origin peak 
(Rogers, 1965; Nielsen, 1975; Blessing & Langs, 1988). 
The iterative fit gives a direct and reliable evaluation of 
the overall anisotropy of mean-square atomic displace- 
ments (Levy, Thiessen & Brown, 1970) and, since the 
iterative fit does not require that the intensities be 
averaged in shells of scattering angle or summed to 
construct the Patterson origin peak, the many weak high- 
resolution data help offset bias from non-random 
distribution statistics in the few strong low-resolution 
data. Most importantly, as shown below, the scaling 
procedures based on (14) through (17) lead to mean- 
ingful experimental normalized structure-factor ampli- 
tudes for direct-methods applications with protein 
crystals. 

In {IF(h)12meas/[6(h)~a f2(s)]} 

--~ - 2  In k - 2/zs 2 + 2a2s 4, 
(15) 

4. Normalized structure-factor amplitudes 

Experimental normalized structure-factor amplitudes are 
calculated from the fitted scale factor and the expectation 



ROBERT H. BLESSING, D. Y. GUO AND DAVID A. LANGS 259 

Table 1. Crystal data for test structures 
Position and mean-square displacement parameters for H atoms were not available so they were omitted from all calculations except the 
experimental IFol normalization denominators in (18). 

2-Zinc pig insulin Rubredoxin Crambin (T ~ 150 K) 

Space group R3 P21 P2 I 
Unit-cell a = b = 82.5, c = 34.0 a = 19.97, b = 41.45, a = 40.763, b = 18.492, 

dimensions (.~£) c = 24.41 /3 = 108.39 c = 22.333 13 = 90.61 
V (,~3) 200409 19 i 85 16833 
Z 9 2 2 
Formula C~12 H821 Ni290152 S12Zn2/3.281 H 20 C243 H300N57 085 S~ Fe. 102H_,O C2o2 H313 N~s 064 S~ .C 2 H 5 OH.84H20 
M r 16713.89 7465.23 6287.82 
Pcatc 1.246 1.292 1.241 
,Omeas 1.245 (by flotation in 

toluene/bromobenzne) 
d (A) oo < d < 1.5 12.8 < d < 1.0 < 0.83 
No. of data 13414 (98% complete) 18529 (91% complete) 28727 (95% complete) 
Reference (a), (b) (c) (d), (e) 

References: (a) Baker et al. (i 988). (b) Blundell & Johnson (1976) show a conventional Wilson plot. (c) Dauter, Sieker & Wilson (1992). (d) Hope 
(1988). (e) Teeter, Roe & Heo (1993). 

value for the Debye-Waller factor as, 

(18) 
× exp[ -2hruh  + 2(hro.h)2]} 1/2 

These are to be compared with the amplitudes of model- 
calculated crystal structure factors normalized to their 
Wilson expectation values, for which four cases need be 
considered. In the general case of [1 ] unequal atoms with 
unequal mean-square atomic displacements, 

Ec(h) = Fc(h) / e(h) ~ p~ f~(h)exp(-2hrb~,h) 

(19) 

where, 

N 
fc(h ) = ~ p. fa(h) exp(2rrihrr~ -- hrb~,h), (20) 

a=l 

and 0 < p~ < 1 allows for partial atomic site occupation 
in disordered structures. In the approximation of [2] 
atoms at rest (or with equal mean-square displacements), 

In the further approximation of [3] point-atoms at rest, 

Ec(h): [~a PaZaexp(2rrihrr~)]/[e(h)~p2Z2~]'/2 

(22) 

w h e r e  Z a = f a ( h ) l u = 0  r e p l a c e s  f a ( h )  in (21) .  A n d  in 
t he  st i l l  f u r t h e r  a p p r o x i m a t i o n  o f  [4] e q u a l  p o i n t - a t o m s  

at rest, 

(23) 

5. Test results with protein data 

We have compared results from (18)-(23) using experi- 
mental diffraction data and refined structural models for a 
number of protein crystal structures, three of which - 
insulin and rubredoxin at room temperature and crambin 
at "-~150K - are listed in Table 1. These three were 
chosen as illustrations because, as their calculated mass 
densities indicate, they are among the few protein crystal 
structures for which an essentially complete structural 
model including solvent structure has been refined. 
Distribution statistics for the refined atomic B values of 
the non-H atoms are given in Table 2, which shows that 
the B distributions are skewed toward larger than average 
B values (for solvent atoms and peripheral protein atoms) 
and are more sharply peaked (for core protein atoms) 
about the average B value than normal distributions. The 
distribution abnormalities follow the sequence: 
insulin < rubredoxin < crambin. 

Table 3 summarizes tests of the atoms-at-rest approx- 
imations (21)-(23) and the normalization procedure 
(14)-(18) applied to 'error-free' model-calculated data. 
The E c-E°c and E c - E ,  ~. columns of Table 3 (and 
similar E c - E  l results not reprinted in Table 3) show 
that the atoms-at-rest hypotheses introduce substantial 
errors in both amplitudes and phases of the high- 
resolution data. In contrast, the IEol- IEcI column, 
second from the right in Table 3, shows that taking the 
atoms-in-motion IFcl values from (20) to be synthetic 
[Fmeas I or IFol data and applying the normalization 
procedure (14)-(18) yields synthetic IEol that agree very 
well with the calculated IEcl from (19), with values of 
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Table 2. Distribution statistics for  the refined B values 
(,~2 ) o f  the non-H atoms o f  the structures listed in Table 1 

Mean 
(B) 

Insulin 29.57 
Rubredoxin 15.82 
Crambin 6.45 

Standard Moment coefficients of 
deviation skewness kurtosis* 

((B- <B>)~) t/2 c3 ca 

19.26 1.09 0.53 
15.06 1.85 2.48 
6.72 3.85 18.60 

* The moment coefficients of skewness and kurtosis are, respectively, 
c 3 = ( ( B -  ( B ) ) 3 ) / ( ( B  - (B))2) 3/2 and ca = ( ( B - ( B ) ) ' ) / ( ( B - ( B ) ) 2 )  2 
-3 .  For normal distributions c 3 ---- c 4 ---- 0. Values of c~ > 0 indicate 
positively skewed distributions with an abnormally large population or 
long tail with B > (B); and values of c a > 0 indicate distributions 
abnormally sharply peaked about (B). 

e - ~ h  IIEol- IEcll/Eh IEol averaging "--5%. This 
constitutes an essential validation of the normalization 
procedure. 

The scale factors and B distribution parameters from 
the normalization procedure applied to the experimental 
IFol as well as to the model-calculated IFcl data sets are 
given in Table 4. The two sets of fitted parameters k, 
#(B), and tr(B) are highly consistent with one another, 
but comparison with the distribution statistics in Table 2 
shows that the fitting procedure systematically under- 
estimated both the means and standard deviations of the 
atomic B distributions. This is because the actual 
distributions are strongly skewed and sharply peaked, 
and cannot be closely approximated by normal distribu- 
tions. Table 4 also shows that along with the under- 
estimation of the mean-square displacement parameters 
#(B) and or(B) there is a correlated overestimation of the 
scale factor k. Ideally we would expect k = 1 from Ifcl 
data, but the IFc] fitted k values in Table 4 are some 15 to 
30% too large. The overestimated k values were, 
however, largely compensated by the underestimated 
#(B) and or(B) values, and the net effect of the systematic 
errors of fit was an only slight deterioration of the 
agreement between the synthetic IEol and model IEcl at 
low resolution, as shown in the second column from the 
right in Table 3. 

Application of the normalization procedure to the 
experimental IFol data is summarized in Table 5, which 
shows that the agreement between the experimental IEol 
and model IEcI is as good as the IFol versus lEvi 
agreement. Predictably, the atoms-at-rest IEc°l values do 
not agree as well as the atoms-in-motion lEvi values do 
with the experimental IEol data, especially at high 
resolution. The low-resolution R(IFI) values in Table 5 
also show that there remain some small problems with 
the IFol data and/or with the scale factor, mean-square 
atomic displacements, and/or solvent structure in the IFcI 
models of the crambin and rubredoxin crystals. We think 
that the uniformity of the R(IFI) and (IFol)/(IFcI) 
statistics over resolution subsets for the 2-zinc pig 
insulin structure testifies to the great care the Dorothy 
Hodgkin and her co-workers devoted to determining the 
interstitial water structure in the crystals. 

Table 3. Agreement statistics in cumulative resolution 
subsets for  calculated data for  the (non-H) structures 

listed in Table 1 

Ec from (19) and (20) for unequal atoms with unequal B values, E~ from 
(21) for unequal atoms at rest (or with equal B values), E~ from (22) for 
unequal point-atoms at rest, and syn the t i c  IEol from (14)-(18) applied to 
!Fcl from (20). The statistics tabulated are the normalized mean absolute 
amplitude differences, R = )-'~h liE, I - IE211/~'-~h 0.5(IE, I + IE21), and 
the IEI-weighted mean absolute phase differences, (Iza~01)= 
~-'~h IE)E21 I~°1 -~°21/)"~h IEIE21, compiled cumulatively for resolution 
subsets of the n reflections with c~ > d > dmin. 

Ec - ~ Ec - E~ IEol - IEcl IEol - I~1 
dm, n (A) n R (IA~01) * R (IA~01) * R R 

Insulin 
1.5 13744 0.364 22.7 0.357 22.0 0.050 0.359 
2 5836 0.290 16 .2  0.280 15.3 0.027 0.290 
2.5 2997 0.228 1 1 . 2  0.217 1 0 . 6  0.019 0.230 
3 1737 0.171 7.8 0.161 7.4 0.023 0.176 
3.5 1093 0.136 6.3 0.125 5.8 0.031 0.146 
4 738 0.122 4.9 0.108 4.6 0.039 0.139 
5 379 0.098 3.9 0.088 3.7 0.056 0.132 
6 216 0.083 2.4 0.077 2.3 0.069 0.130 
8 93 0.067 1.4 0.063 1.4 0.079 0.132 

10 47 0.062 0.9 0.058 0.8 0.086 0.134 

Rubredoxin 
1 20437 0.347 20.0 0.356 20.8 0.049 0.351 
1.5 6122 0.298 1 5 . 0  0.293 14.7 0.048 0.298 
2 2588 0.235 1 0 . 7  0.223 10.1 0.065 0.244 
2.5 1336 0.174 7.5 0.165 7.1 0.084 0.196 
3 786 0.132 5.4 0.124 5.0 0.100 0.171 
3.5 499 0.104 4.2 0.093 4.0 0.113 0.170 
4 335 0.094 3.5 0.080 3.2 0.125 0.176 
5 171 0.089 2.5 0.076 2.2 0.144 0.191 
6 103 0.068 1.8 0.060 1.7 0.153 0.186 
8 44 0.050 1.1 0.046 1.0 0.163 0.195 

10 23 0.032 0.9 0.028 0.8 0.167 0.188 

Crambin 
0.83 30258 0.242 1 1 . 6  0.259 1 2 . 7  0.016 0.243 
1 1 8 3 5 3  0.212 9.7 0.219 10.1 0.018 0.214 
1.5 5542 0.154 6.4 0.153 6.3 0.021 0.158 
2 2390 0.114 4.3 0.107 4.0 0.036 0.124 
2.5 1237 0.083 2.9 0.077 2.7 0.054 0.101 
3 733 0.059 2.1 0.056 2.0 0.064 0.090 
3.5 472 0.044 1.4 0.042 1.4 0.072 0.090 
4 322 0.036 1.1 0.034 1.1 0.078 0.094 
5 168 0.028 0.8 0.025 0.7 0.086 0.102 
6 98 0.022 0.4 0.019 0.4 0.091 0.104 
8 45 0.016 0.1 0.012 0.2 0.094 0.104 

10 22 0.013 0.05 0.010 0.05 0.096 0.107 

6. Conclusions 

Notwithstanding its shortcomings for describing strongly 
skewed and sharply peaked B distributions, the normal- 
ization procedure based on (14)-(18) can produce 
entirely reliable experimental IE(hkl)l amplitudes for 
protein crystals if data extending to "-,2.5 A resolution or 
better are measured (see Appendix C). Common notions 
that the nature of protein crystals or difficulties inherent 
in measuring their Bragg diffraction data present 
insuperable obstacles to reliable normalization are 
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Table 4. B distribution parameters fitted by (14)-(16) to experimental IFol 2 and model-calculated IFcl 2 data for the 
structures listed in Table 1 

Insulin 

Rubredoxin 

Crambin 

Fitted to IFol 2 Fitted to IF,.I 2 
k u(B) (A:) a(B) (~2) k #(B) (~,2) a(B) (~$) 

3.865 (15) 15.30 (5) 0 1.327 (6) 15.63 (6) 0 
3.441 (22) 20.40 (23) 6.45 (14) 1.145 (8) 22.0 (3) 7.18 (15) 
0.02456 (12) 6.37 (3) 0 1.435 (6) 5.86 (3) 0 
0.01998 (16) 10.66 (13) 4.05 (6) 1.213 (10) 9.12 (12) 3.43 (6) 
0.4968 (19) 3.69 (2) 0 1.192 (5) 3.70 (2) 0 
0.539 (4) 3.34 (8) 0.04 (4) 1.321 (8) 3.23 (7) 0.01 (3) 

Insulin 

Rubredoxin 

Crambin 

i.j 1,1 2,2 3,3 1,2 1,3 2,3 

k 3.434 (22) 
#(U o) (.~$) 0.251 (5) 0.251 (5) 0.226 (6) 0.126 (4) 0 0 
a(U'Q (~2) 0.072 (5) 0.072 (5) 0.055 (6) 0.036 (4) 0 0 
k 0.02012 (15) 
# (U  o) (]k 2) 0.152 (2) 0.109 (3) 0.124 (3) 0 0.046 (2) 0 
a(U o) (,~2) 0.050 (1) 0.048 (2) 0.037 (2) 0 0.015 (1) 0 
k 0.4895 (18) 
#(U O) (.~$) 0.0410 (3) 0.0551 (5) 0.0461 (4) 0 0.0066 (2) 0 
o . ( U  ij) ( .~2)  0 0 0 0 0 0 

Notes: For insulin, Blundell & Johnson (1976) report ~(B) = 13.4 .~2 from a conventional Wilson plot. For crambin, with both the observed and the 
calculated data, the attempt to fit a(B) > 0 failed to improve on the statistics of fit obtained with a(B) = 0. Atypically and unrealistically, the fits 
with a(B) > 0 produced increases in k and decreases in/~(B). These effects are presumably due to the very sharply peaked distribution of atomic B 
values (Table 2) in crambin crystals at "-150 K. For all three structures, the anisotropic fit gave no improvement with the calculated IF~I 2 data 
because they were based on is•tropic refinement models. The experimental IFol 2 data, however, manifested significant anisotropy when fitted by 
(16). The a(U O) values are not uncertainties in the U ij values, which are given as e.s.d.'s of fit in parentheses; the a(U'Q values are breadth 
parameters of the anisotropic unit-cell distributions of the anisotropic U 'j values. The overall anisotropies expressed as max(U") /min(U '() are 1.11, 
1.39, and 1.34 for the insulin, rubredoxin, and crambin structures, respectively. The overall U u values could be used to improve the structure 
refinements (Sheriff & Hendrickson, 1987). 

unduly pessimistic. There are, however, several note° 
worthy characteristics that distinguish protein data sets 
qualitatively from small-molecule data sets. 

First, the large average values of the mean-square 
atomic displacements in protein crystals, and the broad 

distributions about the average values, render useless the 
hypothesis of atoms at rest - or even atoms with equal 
mean-square displacements - and the approximations 
(21)-(23) for calculating 'error-free' E(hkl) data for 
protein crystals. 
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Fig. 1. Multiplicity-weighted local averages (IFhl2meas/eh) versus 
((sin 0h)/;t) for the experimental 2-zinc pig insulin data of Baker et 
al. (1988). Symbols are o for the local averages of 135 data each, and 
* for cubic-spline interpolated values. The local minimum at 
d = 2 / ( 2 s i n 0 ) =  6.2A and maximum at 4.4,~ are typical; most 
protein data sets exhibit a similar pair of local extrema due to 
ubiquitous non-random structural motifs (see Table 6 and text). 
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Fig. 2. Multiplicity-weighted local averages (If~12/(e ~-~ f~)) 
2 2 versus ( ( s i n 0 ) / 2 )  from calculated data for the 2-zinc insulin 

structure (Baker et al., 1988). Symbols are * for the cubic-spline 
interpolated data curve, 1 for equation (14) fitted with a(B) = 0, and 
2 for (14) fitted with a(B) > 0. The fitted parameters are given in 
Table 4. The local minimum and maximum in the calculated data 
occur at 6.2 and 4.4 ,~ resolution, respectively, as in the experimental 
data shown in Fig. 1. 
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Tab le  5. A g r e e m e n t  stat ist ics in cumulat ive  resolut ion subsets  f o r  observed  versus  ca lcula ted  IEl 'sfor the s tructures  
l is ted in Table 1 

IEol from the experimental ]Fol via (14)-(18) versus [Eel from (19) and IE~I from (21). H atoms were omitted from all calculations except the 
experimental IFol normalization denominators in (18). The statistics tabulated are the normalized mean absolute amplitude differences, 
er = Y~n liFo I - k IF c I1/~. lEo l, and R E = ~--~h ]lEo I - IEc I1/~h IEol, compiled cumulatively for resolution subsets of the n reflections with 
oo > d >  dmi n. The scaling factor in R~, k = ~--~h I fol /Eh IF,-I, was computed for the full data set and not re-computed for the lower resolution 
subsets. The values were k = 1.214, 1.135 and 1.209 for the insulin, rubredoxin and crambin data sets, respectively. 

dr, in n (Ifol)/(klfcl) RF (Ifol z ) (IEcl z ) Re (IE~ I: ) RF. 

Insulin 
1.5 13414 1.00 0.164 1.00 0.92 0.202 0.95 0.356 
2 5591 0.98 0.132 0.98 0.98 0.140 0.99 0.304 
2.5 2936 0.97 0.123 0.95 0.96 0.124 0.95 0.270 
3 1737 0.96 0.118 1.01 1.02 0.115 0.96 0.227 
3.5 1093 0.96 0.110 1.04 1.02 0.102 0.91 0.192 
4 738 0.97 0.113 0.99 0.94 0.105 0.82 0.186 
5 379 0.96 0.140 0.73 0.67 0.128 0.59 0.189 
6 216 0.96 0.157 0.66 0.59 0.145 0.52 0.196 
8 93 0.97 0.175 0.86 0.74 0.165 0.66 0.204 

10 47 0.98 0.213 0.91 0.77 0.202 0.70 0.236 

Rubredoxin 
1 18529 1.00 0. i 6 i 1.00 1.02 0.172 1.02 0.354 
1.5 6111 1.02 0.125 0.97 0.91 0.126 0.93 0.314 
2 2577 1.02 0.118 0.99 0.92 0.116 0.94 0.262 
2.5 1326 1.00 0.112 0.98 0.94 0.108 0.94 0.2 ! 6 
3 776 0.98 0.110 1.04 1.00 0.103 0.99 0.189 
3.5 489 0.98 0.120 1.04 1.00 0.110 0.93 0.180 
4 325 0.96 0.141 0.89 0.87 0.129 0.79 0.198 
5 161 0.93 0.219 0.55 0.56 0.197 0.52 0.256 
6 93 0.87 0.269 0.55 0.62 0.236 0.58 0.278 
8 43 0.84 0.578 0.64 0.77 0.340 0.71 0.366 

10 13 0.68 0.696 0.51 0.93 0.625 0.90 0.621 

Crambin 
0.83 28727 1.00 0.156 1.00 1.01 0.171 1.01 0.261 
1 18277 1.00 0.135 1.05 1.04 0.137 1.03 0.232 
1.5 5542 1.00 0.115 0.95 0.91 0.115 0.92 0.188 
2 2390 1.00 0.112 1.08 0.98 0.115 0.99 0.159 
2.5 1237 0.98 0.114 1.10 i.00 0.115 0.99 0.140 
3 733 0.97 0.117 1.18 1.07 0.114 1.07 0.127 
3.5 472 0.94 0.126 1.09 1.02 0. I 15 1.00 0.126 
4 322 0.92 0.146 0.95 0.92 0.127 0.89 0.141 
5 168 0.88 0.202 0.68 0.72 0.165 0.70 0.175 
6 98 0.84 0.248 0.68 0.78 0.202 0.76 0.207 
8 45 0.78 0.353 0.82 1.06 0.288 1.03 0.285 

I 0 22 0.69 0.556 0.84 1.35 0.445 1.32 0.438 

S e c o n d ,  as i l lus t ra ted in Figs.  1 and  2, p ro te in  crys ta ls  
exh ib i t  charac te r i s t ica l ly  s t ruc tu red  d i s t r ibu t ions  o f  local  
ave r age  in tens i ty  aga ins t  scatterinog ang le ,  wi th  typ ica l ly  
a local  m i n i m u m  (IFI 2) at d _~ 6 A  re so lu t ion  and  a local  
m a x i m u m  at d ~ 4 A .  Othe r s  (e.g., F r e n c h  & Wi l son ,  
1978) have  n o t e d  these  fea tures  before;  we  th ink  they  are 
due  to the  u b i q u i t o u s  p ro te in  s t ructura l  mo t i f s  l is ted in 
Tab le  6. T h e  twis t ing  cou r se  o f  a p r o t e i n ' s  m a i n - c h a i n  

1,2 C ' ~ - - C  ~ repea t  uni ts  p laces  m a n y  s ide -cha in  a t o m s  

nea r  crysta l  p l anes  wi th  ---4A spac ings  in m a n y  
d i rec t ions ,  and  these  d e n s e l y  p o p u l a t e d  fami l ies  o f  
p l anes  h a v e  h i g h e r  than  ave rage  Bragg  ref lect iv i ty .  
S imi la r ly ,  the  1,3 C ~ - - C  ~ repea t  uni ts  p lace  m a n y  
a t o m s  nea r  p l anes  wi th  "--6 ,~, spac ings ,  bu t  these  d e n s e l y  
p o p u l a t e d  fami l ies  o f  p l anes  in te r leave  one  ano the r ,  
re f lec t  b e a m s  that  in ter fere  des t ruc t ive ly ,  and  have  l ower  
than  ave rage  ref lect ivi ty .  

Th i rd ,  add i t iona l  local  m i n i m a  and m a x i m a  are 
s o m e t i m e s  d i sce rn ib l e  in very  low re so lu t ion  da ta  f r o m  
pro te in  c rys ta ls  wi th  uni t  cel ls  larger  than  those  o f  ou r  
insul in ,  r u b r e d o x i n  or  c r a m b i n  e x a m p l e s .  T h e s e  ave r age  
in tens i ty  osc i l l a t ions  are a t t r ibutable  to the  n o n - u n i f o r -  
m i t y  o f  the  ave r age  e l ec t ron -dens i t y  d i s t r ibu t ions  ove r  
the  uni t  cel ls  o f  p ro te in  crys ta ls  due  to the i r  be ing  
pa r t i t ioned  into m o r e - o r - l e s s  wel l  d e f i n e d  p ro te in  and  

so lven t  reg ions .  In l iquid  wa te r  wi th  m a s s  dens i t y  
1 . 0 0 m g m m  -3 the v o l u m e  per  wa te r  m o l e c u l e  is 
v ( H 2 0  ) -- 29 .92  ,~3, and  the  ave r age  e l ec t ron  dens i t y  is, 

(Ps) = 10 e / 2 9 . 9 2 / ~  3 = 0 .334  e A  -3. 

In a p ro t e in  crys ta l ,  the  ave r age  e lec t ron  dens i t y  in the  
p ro te in  r eg ions  can  be a p p r o x i m a t e d  as, 
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Table 6. Fundamental repeat distances in protein 
crystals from standard average bond lengths, valence 
angles, conformation angles, and water. • .water 

hydrogen bonds 

Repeat unit Repeat distance (A,,~) 

C(u,)--C(u,+I) 3.82 
C(a,_ i ) -  C(0t,+ 1) 5.42 in u-hel ices 

6.92 in fl-sheets 
H20- . -H20 2.75 O - - O  in ice 

H20 109.5 0 - - 0 - - 0  
/ \ 

H20. . .H~O 4.49 O . . . O  

N~ 

(Dp) = Z Zp/[Vcell - N.,. v(H20)], 
p=l 

where Np is the number of protein atoms (H atoms 
included), and N~ is the number of water molecules, per 
unit cell. Assuming the molecular volume in liquid water 
to be fair approximation in the solvent regions, we get, 

(pp) = 0.450, 0.453 and 0.431 e/~k -3, 

for our insulin, rubredoxin, and crambin examples, 
respectively, and we take, 

(Pp)/(Ps)  = 4/3, 

as a rule-of thumb. 
Finally, the solute-solvent partitioning in protein 

crystals profoundly affects the scattering-angle distribu- 
tion of their normalized structure factors. This is shown 
in Table 7 and Fig. 3, which summarize calculations for 
the protein non-H atoms and for the water O atoms in 
insulin crystals. Three sets of E's, one for the complete 
structure and one for each of the two substructures, were 
calculated separately, with each set normalized for its 
own chemical composition. The protein and solvent 
substructures each have (Igl 2) > 1 at low resolution, 
with remarkably large IE[ 2 values for some very low- 
angle reflections, but the complete protein-plus-solvent 
structure has (IEI 2) < 1 for its low-resolution subsets. 
This implies that the protein scattering is mainly out of 
phase with the solvent scattering, which, due to the large 
mean-square displacements of the water molecules, is 
mainly confined to the low-angle reflections. The effect 
on low-resolution structure factors is so large that 
calculations of 'error-free' data for protein crystals are 
utterly unrealistic below "~6,~ resolution.if the solvent 
substructure is not included. 

An anti-phase relationship between beams scattered by 
the protein and solvent substructures is to be expected 
since, for the most part, the solvent molecules occupy the 
interstitial space midway between neighboring protein 
molecules, and beams scattered by the two interleaved 
substructures interfere destructively. The ([EI 2) versus 
((sin0)/2) plots in Fig. 3 show that the combined 
structure and the protein-only substructure each exhibit 

Table 7. Substructure data on the non-H atomic B 
distributions and atoms-in-motion I E c 12 values from (19) 

for 2-zinc pig insulin (Baker et al., 1988) 

The three columns on the right give results for the protein-plus-solvent 
combined structure, the protein-only substructure, and the solvent-only 
substructure, respectively. The tabulated hkl are those for the first 15 
reflections in order of increasing scattering angle. 

Protein 
plus Protein Solvent 

solvent only only 

Pm (mg mm -3) 1.143 0.807 0.336 
(B) 29.6 21.1 53.7 
( ( B -  (B))2) '/2 19.3 12.0 16.1 
c 3 1.09 1.8 0.4 I 
c4 0.43 4.2 -0 .74  

dmi n n (IEcl 2) 

1.5 13414 0.92 0.92 1.00 
2 5591 0.98 1.00 0.98 
2.5 2936 0.96 1.05 0.90 
3 1737 1.02 1.22 0.82 
3.5 1093 1.02 1.38 0.75 
4 738 0.94 1.46 0.77 
5 379 0.67 1.51 0.95 
6 216 0.59 1.71 1.30 
8 93 0.74 2.65 2.13 

10 47 0.77 3.93 3.52 

h k 1 [Ec(hkl)[ 2 
- 2  1 0 0.79 3.93 2.03 
- 1  1 1 0.74 18.24 25.08 
- 2  0 1 0.56 9.57 12.16 
- 3  0 0 0.77 34.56 56.39 
- 2  3 1 0.05 0.51 0.50 
- 3  2 1 0.56 0.86 1.25 
- 4  2 0 0.02 1.09 3.14 
- 4  1 1 0.44 0.54 1.71 
-1  4 1 3.61 14.33 5.85 
-1  0 2 0.04 0.13 0.04 
- 4  4 1 1.58 7.01 3.42 
- 5  4 0 1.40 5.37 2.31 
- 5  1 0 0.22 2.06 2.21 
- 2  2 2 0.99 2.92 0.78 
- 5  3 1 0.86 7.34 7.59 

minima at "-'6 .~ and maxima at "~4 ,~, presumably due to 
the 1,3 and 1,2 C~- -C ~ repeats (Table 6), respectively. 
The water-only substructure exhibits a clear minimum 
at " 5  A, possibly due to interleaved 1,3 oH20...H20 
repeats, but an anticipated maximum at -,- 3 A, due to the 
1,2 H20. . .H20 repeats, is flattened on account of the 
large mean-square displacements of the water molecules. 
By equation (7), with /z = 53.7 and cr = 16.1 ,~, from 
Table 7, the Debye-Waller factors for the water 
substructure at s = 1/(2d) are (W 2) = 0.36 and 0.07 at 
d = 5 and 3 ,~. respectively, showing that for d < 3 ,~ 
the water scattering is practically nullified by thermal 
vibration and disorder. 

Copies of the FORTRAN source codes and ASCII 
files of users' instructions for our normalization 
programs SORTAV, BAYES, LEVY and EVAL are 
available on request from their author, RHB. 



264 STATISTICS OF D E B Y E - W A L L E R  FACTOR AND E(hkl) VALUES 

2 . 5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Pro te in -p lus - so lven t  
c o m b i n e d  s t ructure  

2.0- v =  (IEAhkll[ 21 

4 . 0 A  .r = • - m  

1.5- ° .  

. . . .  o 

. . . . .  o ° •  

o . . .  c ~  

1 . 0 0  . . . . . . . . . . . . . . . . .  : . . . . . .  - o  . . . . . . . . . .  o o . ; o g  :_, . . . . . . . . . . . .  

.: :o: ~ .% : :.o.o.~ ,o :g  ~ ~; g g ~ . . % o : ~ :  
. ~ . . . . . . .  o . ° ° o  o 

° o . o  . : . ~ :  "o"~ °"!.°2: o . ~  
• ~ •  ° .  o 

0 .50 :  " ' : . . .o"  

6 . 5 A  

0.(XF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.0(10 (I.(133 [I.067 0.10(I [I. 133 [I. 166 0.2(R) (I.233 0 .2h6 0 .300 [I.333 

(a) 

2.5[) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

P r o t e i n - o n l y  
subs t ruc ture  

¢ 
° °  

2.00-  : v =  (IEc(hkl)l 2) 
° •  

sin ~(hkll I • 4.2 A x = ( ..... £ . . . .  / 

• o ° •  

1 . 5 O "  . - -  
• . • 

. .  ° o  ° °  

. . . . . . .  L ; ;  
rio ~ °  ° °  

1.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~, . . . . . . . . . . . . . .  
• o .o °. .o o • o • o o o..o.o, o o. ~ .  

• • o o..o o .... .o 
...... o o...**o o .o.oo~**.o..ooo.o.ooo o. 

6. l A o •oZ "° :: " ° g o :  . . . . . . . . .  
o ° o o  o o o  

0.50-  

0 .00;  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 .000 0.033 0.(167 O.I(X) 0.133 0.166 0.20(/ 0.233 (I.266 11.300 0.333 

(b )  

2.5(I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

So lven t -on ly  
subs t ruc ture  

2;10-  v =  (IEc(hk-lH2!, 

o . r  = m . -  

1.511: 
• "" 2.'7 ,~, ~ i 

• .  

• o :  

. . . .  • " :c..o .~ . .+ :  ::o.o.o:. ! .~ = :..~ 

i . (xl i  . . . . . . . . .  L. . . . . . . . . . . .  .o" "2.:i2°'~ " ' ~ "  0" : ° :~ ' ° i~ ; : . : . "7 !&%i ; ,  ° :  
. . . . . . . .  ~ o . o  • o .  • o 
o o• o o o 

• .. 

o ~  
.. ..,m 

o•.o. 

(I.511- 

5.(I X 

(I.00: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
O.(X)0 (I.033 0.067 O.I(R) [I.133 (I.166 0.2(X) (/.233 0 .266 0 .300 [I.333 

(c) 

Fig. 3. Multiplicity-weighted local averages (IE,.I 2) versus ((sin0)/2) 
for 2-zinc pig insulin corresponding to Table 7. Symbols are o for the 
local averages of 137 data each, and * for cubic-spline interpolated 
values. The local extrema are discussed in the text. 

A P P E N D I X  A. Simplif ication of  equation (6) 

The integrand in (6), 

f ( B )  = exp - [ ( B  -/_t)2/(2o-2)] exp( -2Bs2) ,  

is simplified by first expanding and collecting terms to 
obtain, 

f ( B )  = exp{-1/(2o.2)[B 2 - 2(bt - 2o-2s")B +/-t2]}, 

then completing the binomial square by adding and 
subtracting the square of half the first-degree term in B. 
After some simplification we obtain, 

f ( B )  = e x p { -  1/(2o.2)[(B - # + 2cf2s2) 2 

+ 4 o - 2 s 2 ( / , t  - -  o - 2 S 2 ) ] } ,  

which we rewrite as a product of two exponentials, 

f (B) = e x p [ - 2 ( #  - o.2 s2 )s 2] 

× exp - [ ( B  - # + 2o.2se)2/(2o.2)]. 

The first exponential factors out of the integrand, and, 
since ,J'_*~X e x p [ - ( x  + a)2]dx = ,/'+~ ~. exp ( -u2 )du ,  the 
second exponential integrates to the reciprocal norm- 

. • 1 "~ ahzauon constant o.(2rr) 72 so that (6) simplifies to (7). 

A P P E N D I X  B. l terative least-squares  fitting based on 
equat ions  (14), (15) and (16) 

The data fitted are the individual unique reflection data. It 
is neither necessary nor advantageous to average the data 
in shells of scattering angle, and since the data-to- 
parameter ratio is large the refinements have large radii 
of convergence and converge quickly. In a step prior to 
the least-squares fitting, the data are processed by a 
Bayesian procedure (French & Wilson, 1978) that 
improves the experimental values IFl~e.s, o-(IFl,~e.s). 
IF Imcas and o-(IFImc.sl, especially for the weak reflections 
with -3o.(1) < 1 < -t-3o.(1). 

The residual minimized in the least-squares fitting is, 

X 2 =  ~ m w A  z - -  ~ mzaZla2(A) 
h h 

= ~ m(y,, - y,,)2/[o.e(y,,) + o2(y,.)], 
h 

(24) 

where m is the point-group multiplicity of reflection h 
and where it is essential that the weights be based on 
variance estimates for both the observed and calculated 
ordinates. 

For the iterative refinements based on (14) and (16) the 
observed and calculated ordinates are, 
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k 2 exp(-2/xs2), 
k -2 exp ( -2#s  2 4- 2o2s4), 

Yc - -  k - 2  exp(-2hr/ th) ,  or 
k -2 exp[_2hr/lh + 2(hro'h)2]. 

(25) 

The Yo are measured relative intensities normalized to the 
absolute scale of scattering by a structure of uniformly 
randomly distributed atoms at rest, and the Yc are 
normalized Wilson expectation values on the relative 
experimental scale for vibrating or disordered atoms. The 
corresponding variance estimates are, 

r r 2 ( y o ) = r r 2 ( F l 2 m e a . , ) / ( e ~ f ~ )  2 

-- yoZ[o.(IF 2meas)/lFl2meas]2 

cr2(y~) 2 2 = ycrrw, 

(26) 

2 is the normalized variance (10) of the where o" w 
appropriate Wilson distribution, namely, 

cry. = { 1 for acentric reflections, or 
2 for centric reflections. (27) 

Similarly, for the initial approximation by logarith- 
mically linearized fit based on (15) with cr -- 0, 

Yo =lnI[f[~neas/(E~a f2)] 

Yc = - 2  In k - 2/.ts 2, 
(28) 

and, 

cr2(yo) --  [or(IF IZmeas)/ [Flmeas]2 2 
2 O2 (Yc) :~w" 

(29) 

Unlike the many least-squares problems in which 
cr20'c) is negligible compared with rr2(yo), the present 
problem presents a reverse situation since, typically, 
(cr(lFl2e,~))/( 2 IFImeas) < 0.05 but cr w -- l or (2) I/2. 
Furthermore, for the iterative least-squares fitting, the 
weighting factors must be re-evaluated in each cycle 
since their values depend on the value of the fitted 
parameters. This compounds the non-linearity of the 
problem. 

To deal with the non-linearity and the strong 
numerical correlations among the fitted parameters, 
which often have correlation coefficients p(k, l~) ,  
p(k, or) < -0 .9  and p(#, or) > 0.9, we have programmed 
the iterative fitting to estimate optimum shift-damping 
factors 0 _< f < 1 in each cycle (Hamilton, 1964). The 
fitting typically converges to a standardized root-mean- 
square error of fit, 

Z - -  [ X 2 / ( n  - m ) ]  1/2 " -  1, ( 3 0 )  

for n data and m fitted parameters, but the normalized 
root-mean-square error of fit is always very large, 

R = (X2/~-~ wy2)  '/2 > 0.5. (31) 

The large R values are not surprising since the iterative 
fitting corresponds to a structure refinement for which 
the structural model is a single super-pseudoatom, with 
the scattering power of whole unit cell, positioned at the 
unit-cell origin (Sheriff & Hendrickson, 1987). The 
optimizations of the shift-damping factors, significance 
tests for an improved fit as more parameters are included, 
and the criterion for convergence at cycle n, 

R n < R,_ 1 and fnl6/O'lmax < 10 -6, (32) 

are based on R rather than Z because the parameter- 
dependent weights appear in both the numerator and 
denominator of R but in only the numerator of Z. 

APPENDIX C. Variability of fitted k and B 
parameters 

One of the referees of this paper asked how the values of 
the scale and mean-square displacement parameters 
obtained using the statistical expectation value of the 
Debye-Waller factor compare with values obtained by 
other methods, and how the values vary with data 
resolution. Data pertaining to these questions are given in 
Table 8 for the insulin structure; corresponding data from 
the rubredoxin and crambin structures show the same 
trends. 

Table 8 shows that the methods that tacitly assume 
rr(B) = 0 tend to overestimate k and underestimate/z(B) 
more than the fit based on (14) with a(B) > 0 does. In 
general, we have found that the best agreement with 
'true' refined-structure k and B values is obtained using 
(14); relatively good agreement results from analysis of 
the Patterson origin peak; and relatively poor agreement 
results from a conventional Wilson plot. Table 8 also 
shows that, while cutting back the data resolution 
from 1.5 to 2,~ actually improved the fitted k and B 
parameters, further cutting back from 2 to 4k, gave 
worse and worse parameter estimates. We think that the 
improvement a t  d m i n  ---  2 A occurred because, with the 

2 --- l/(2dmin) 2 = 0.0625.4, 2 the data set truncated to Sma x 

fit of (14) could better accommodate the concave 
curvature of the data shown in Fig. 2. This behaviour 
suggests that more accurate k and B parameters might be 
obtained if an analog of (14) were derived for a Gramm- 
Charlier expansion about a normal distribution (Johnson 
& Levy, 1974) to include skewness and kurtosis terms to 
fit data with strongly concave curvature. 

The data presented in Table 8 illustrate our general 
experience that reliable estimation of k and B parameters 
requires data to "--2.5A or better resolution. Absent 
reliable k and B parameters, lower resolution data sets 
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Table 8. Effects of  different fitting methods and data- 
resolution limits on the scale and mean-square atomic 
displacement parameters fitted to the model-calculated 

IFcl 2 data for the insulin structure 

4.~. u(B) ,~(8) 
(,~) k (,~2) (~,2) Fitting method Reference 

0 1 29.6 19.3 Refined structure (a) 
averages 

1.5 1.24 18.1 0 Rogers P(000) analysis (b) 
1.5 1.74 15.4 0 Wilson plot, (15) with (c) 

or--0 
1.5 1.33 15.6 0 (14) with tr = 0 (d) 
1.5 1.14 22.0 7.2 (14) (e) 
2 1.09 25.9 10.7 (14) (e) 
2.5 1.19 27.2 0.006 (14) (e) 
3 1.25 26.8 0.02 (14) (e) 
3.5 1.42 2.4 0.6 (14) (e) 
4 2.27 0.0 0 (14) (e) 

References: (a) Baker et al., 1988; (b) Rogers, 1965; Blessing & Langs, 
1988; (c) Wilson, 1949; (d) Levy et al., 1970; (e) this work. 

cannot be normalized using (18), and one must resort to 
normalization to the empirical local average intensity, 

IEo(h)l = IFo(h)l/[e(h)(IFol2/e)] ~/2, (33) 

as suggested by Main (1985). Experimental IEI 
magnitudes estimated by (33) are generated by our 
program BAYES. 
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